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Abstract
Modified Fermi–Dirac functions for the fermionic partons and a Bose–Einstein
expression for gluons allow us to successfully describe both polarized and
unpolarized structure functions in terms of a small number of parameters.
Definite predictions are made for q̄ distributions to be tested in forthcoming
experiments.

PACS numbers: 12.38.−t, 02.30.Gp

It is a great honour for me to contribute to the volume dedicated to my colleague
and friend, Lochlainn O’Raifeartaigh.

The approximate scaling properties of the structure functions for deep inelastic scattering
processes initiated by charged leptons or neutrinos give twofold support to QCD for its
asymptotic freedom [1], which accounts for the success of the parton model, and for the
soft narrowing of x-distributions, which is expected from quantum corrections [2].

The theory is able to predict the structure functions for every Q2 > Q2
0, once they are

given at Q2
0 together with the gluon distributions [2].

There are restrictions on the parton distributions, which follow from the quantum numbers
of the target (proton or neutron) [3], or from the chiral properties of QCD [4]:∫ 1

0
[u(x) − ū(x)] dx = 2 (1)

∫ 1

0
[d(x) − d̄(x)] dx = 1 (2)

∫ 1

0
[u↑ − u↓ − d↑ + d↓ + · · ·](x) dx = GA

GV

(3)

where u(x) and d(x) are the parton distributions in the proton (isospin symmetry implies that in
order to obtain those appropriate for the neutron one has to exchange u ←→ d and ū ←→ d̄)
and the Q2 dependence is omitted for the sake of brevity.

0305-4470/02/408513+05$30.00 © 2002 IOP Publishing Ltd Printed in the UK 8513

http://stacks.iop.org/ja/35/8513


8514 F Buccella

From equations (1)–(3) one derives the sum rules:∫ 1

0
F3(x, Q2) dx = 3

[
1 − αS(Q

2)

π
− · · ·

]
(4)

∫ 1

0
[gp

1 (x) − gn
1 (x)]dx = 1

6

GA

GV

[
1 − αS(Q

2)

π
− · · ·

]
. (5)

The role of the Pauli principle for parton distributions was advocated many years ago by
Niegawa and Sasaki [5] and by Feynman and Field [6]; these authors state

‘. . . the pairs uū expected to occur in the small x region (the ‘sea’) are suppressed more
than dd̄ by the exclusion principle. . . ’.

They also assumed a different high-x behaviour for u and d partons to comply with the
dramatic fall at large x of the ratio [7]

Fn
2 (x)

F
p

2 (x)
= u(x) + 4d(x) + · · ·

4u(x) + d(x) + · · · . (6)

This behaviour may also be a consequence of the Pauli principle, which may demand broader
x-distributions for higher first moments; moreover, the increasing of the ratio at high x [8]

g
p

1 (x)

F
p

1 (x)
= [4u↑ − 4u↓ + d↑ − d↓](x) + · · ·

4u(x) + d(x) + · · · (7)

requires the dominance at high x of u↑, the valence parton with the highest first moment. In
fact, if we neglect the q̄ contributions, equations (1)–(3) and the second Bjorken sum rule
imply

u↑ � 3
2 � d↓ + u↓ + d↑. (8)

By assuming d(x) = 2u↓(x), which is an approximately good relationship for their first
moments, one may deduce, in the region where valence quarks dominate, by neglecting the
contribution of �d(x) to g

p

1 (x) [9],

xg
p

1 (x) = 2
3 [Fp

2 (x) − Fn
2 (x)] (9)

which is well satisfied for x > 0.2.
The role of the Pauli principle has motivated the description of the quark parton

distributions in terms of Fermi–Dirac functions [10, 11]:

xp(x) = f (x)

exp{[x − x̃(p)]/x̄} + 1
(10)

where f (x), x̄ and x̃(p) play the role of the weight function, temperature and thermodynamical
potential of the quark parton p, characterized by its flavour and helicity.

The chiral QCD properties relate the potential for antiparticles with opposite helicity
[11, 12]:

x̃h
q + x̃−h

q̄ = 0. (11)

To describe data we assume for the light quarks (u, d) and their antiparticles [13]

f (x, p) = Ax̃h
q xb (12)

f (x, p̄) = Āx2b

x̃−h
q

(13)

respectively. To agree with the experimental data we need to modify the Fermi–Dirac
expressions for the quark by the factor x̃q ; it is reasonable, in this framework, to divide the
expressions for the antiquarks with opposite helicity by the same factor in such a way that the
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product of the two expressions is the same as one should obtain with Fermi–Dirac functions.
Also the factor of two for the exponents for the small-x behaviour has been assumed on an
empirical basis (with this value, we shall find, b � 0.4, which corresponds to a factor � 1

3 for
the negative exponents for the small-x behaviour of q̄(x) and q(x), respectively).

To comply with the small-x behaviour one has to add a diffractive term characterized
at small x—by a power-like behaviour with a more negative exponent than the Fermi–Dirac
term (10) [13]:

Ãxb̃

exp(x/x̄) + 1
(14)

to be added to the modified Fermi–Dirac term defined by equations (10)–(13).
The form chosen for the diffractive term is different from the previous proposals and is

strictly related to the form assumed for the gluons, with the same power-like behaviour at small
x and a vanishing thermodynamical potential. These assumptions are consistent with the rela-
tionship, suggested by QCD, between the sea and the gluons and with the requirement that the
diffractive part is unpolarized, obeys equation (11) and is invariant under charge conjugation.

In conclusion we have

xu↑(x) = Ax̃+
uxb

exp[(x − x̃+
u )/x̄] + 1

+
Ãxb̃

exp(x/x̄) + 1
(15)

xū↓(x) = Āx2b

x̃+
u {exp[(x + x̃+

u )/x̄] + 1} +
Ãxb̃

exp(x/x̄) + 1
(16)

and similar expressions for the other light partons.
Since we have no such constraints on strange partons, in order not to introduce new

parameters we take from experiment [14]

s(x) = s̄(x) = ū(x) + d̄(x)

4
(17)

and to obey the second Bjorken sum rule we assume

�s(x) = �s̄(x) = �d̄(x) − �ū(x)

3
. (18)

At the scale we consider, Q2
0 = 4 (GeV)2, we neglect charmed partons, which will be induced

at higher Q2 by the evolution equations.
Finally we take the Bose–Einstein form for gluons:

xG(x) = AGxb̃+1

exp (x/x̄) − 1
. (19)

The choice to take the highest possible value for x̃±1
G , zero, which implies �G(x) = 0,

corresponds to considering the hadrons in the deep inelastic regime as a black-body cavity for
the colour gauge field.

The quantities A and Ā are constrained by equations (1) and (2), while AG has to verify
the momentum sum rule, so we have eight free parameters, x̄, x̃h

u , x̃h
d , b, Ã and b̃ for the quarks

and none for the gluons.
By taking data from NMC, BCDMS, E665, Zeus and CCFR collaborations for the

unpolarized structure functions and from SMC, E154 and E155 for the polarized ones1, we

1 References quoted in [13].
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obtain [13] a total χ2 = 322 for the selected 233 data points with the values of the eight free
parameters given by

x̄ = 0.099 07 (20)

x̃+
u = 0.461 28 (21)

x̃−
d = 0.301 74 (22)

x̃−
u = 0.297 66 (23)

x̃+
d = 0.227 75 (24)

b = 0.409 62 (25)

b̃ = −0.253 47 (26)

Ã = 0.083 18. (27)

The inequalities:

x̃+
u � x̃−

d � x̃−
u > x̃+

d (28)

confirm the previous determinations [10, 15].
There are appealing approximate relationships for the potentials:

x̃−
d � x̃−

u � 2
3 x̃+

u � 4
3 x̃+

d . (29)

We found higher values for �s + �s̄ and still more for the non-diffractive part of s + s̄ than
the upper limits previously found [16] in the study of charm production. However, since in
that case different values have been assumed for the exponents of the powers for the small-x
behaviour of the two terms, the analysis should be redone with those assumed here. The
inequality d̄(x) > ū(x), which we expect within the statistical approach, is in disagreement at
high x, where the experimental errors are large, with the trend of data found by E866/Nusea
collaboration [17].

Waiting for more precise experiments in this field, an important test for high-x q̄

distributions will be supplied by the study at RHIC of the W± production in p–p collisions [18].
Should the statistical approach survive the crucial test just mentioned, in order to retain

the quantum statistical properties displayed by parton distributions at Q2 > Q2
0 and �G = 0,

we should modify the evolution equations, as done several years ago [19], by taking into
account Pauli blocking for fermions and stimulated emission for gluons. This last effect,
which enhances gluon formation, may account for the highest possible value, zero, assumed
for the thermodynamical potential of gluons of both helicities.

Conclusions

Inspired by some experimental indications in favour of a role of the Pauli principle for the
fermionic partons, we have been able to construct a successful set of parton distributions in
terms of a small number of parameters.

A crucial test will be performed by the determination of light q̄ distributions at high x in
W± production in p–p reactions at RHIC and with more precise measurements of Drell–Yan
processes.

Should the predictions on ū and d̄ partons from the statistical approach

d̄(x) − ū(x) > 0 (30)

�ū(x) > 0 (31)

�d̄(x) < 0 (32)
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be confirmed by experiment, it would be worthwhile to understand the appearance of the
factors x̃h

q in the numerators (denominators) of the non-diffractive terms of the light-quark
distributions.

Also one should write statistically inspired strange parton distributions and modify the
evolution equations in such a way as to retain for Q2 > Q2

0 = (4 GeV)2, the form proposed
here for parton distributions.

A phenomenological success of quantum-statistics-inspired expressions for partons would
imply that the hadrons, even in the deep inelastic regime, have a limited phase space for the
contained partons, which is a necessary condition for the deviation from the extreme-dilution
case, which gives rise to classical statistics. The increase with Q2 of the transverse degrees
of freedom should imply the approach to the classical limit, but the transverse momentum
of a parton with a finite longitudinal momentum contributes to its energy. As a consequence
the role of the transverse degrees of freedom might be less relevant than generally believed:
indeed, a cut on the transverse momentum of the produced hadrons is present in high-energy
hadronic reactions.
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